∵方程有兩個(gè)不相等的實(shí)數(shù)根,
∴△>0,
即-8m+16>0,
解得m<2,
∴實(shí)數(shù)m的取值范圍是m<2;
(2)在△ABC中,∠C=90°,tanB=
3 |
4 |
∴
b |
a |
3 |
4 |
設(shè)b=3k,a=4k,
則c=
9k2+16k2 |
又∵c-b=4,
∴5k-3k=2k=4,
解得k=2,
∴c=10.
不妨設(shè)原方程的兩根為x1,x2,
由根與系數(shù)的關(guān)系得x1+x2=2(m-1),
x1x2=m2-3,
∴x12+x22=(x1+x2)2-2x1x2=4(m-1)2-2(m2-3)
=2m2-8m+10,
由已知有:x12+x22=102,
∴2m2-8m+10=102=100,
解這個(gè)方程得m1=-5,m2=9,
又∵方程有兩個(gè)不相等實(shí)數(shù)根,
必須滿足m<2,
∴m=-5.