|
|
(9n?1)(n+7) |
而(9n-1)(n+7)是整數(shù),其平方根若為有理數(shù)則必為整數(shù).
設(shè)非負(fù)整數(shù)m滿足m2=(9n-1)(n+7)=9n2+62n-7.
則9m2=(9n)2+62(9n)-63=(9n+31)2-312-63=(9n+31)2-1024.
即有1024=(9n+31)2-9m2=(9n+31+3m)(9n+31-3m).
9n+31+3m是1024的約數(shù).
n是正整數(shù),m是非負(fù)整數(shù),故9n+31+3m是大于31的整數(shù).
此外,易見9n+3m+31除以3余1.
滿足條件的1024的約數(shù)有64,256,1024.
若9n+31+3m=64,有9n+31-3m=
1024 |
64 |
若9n+31+3m=256,有9n+31-3m=
1024 |
256 |
若9n+31+3m=1024,有9n+31-3m=
1024 |
1024 |
可驗(yàn)證n=1時(shí)
|
|
7 |
3 |
故滿足條件的正整數(shù)為1,11.