得(2+2d)2=(2+d)(3+3d),解得d=2,或d=-1,…(2分)
當(dāng)d=-1時,a3=0,與a2,a3,a4+1成等比數(shù)列矛盾,舍去.∴d=2,…(4分)
∴an=a1+(n-1)d=2+2(n-1)=2n,
即數(shù)列{an}的通項公式an=2n.…(6分)
(2)∵bn=2n+22n=2n+4n…(8分)
∴Sn=(2+4)+(4+42)+…+(2n+4n)
=(2+4+…+2n)+(4+42+…+4n)
=
n(2+2n) |
2 |
4(1?4n) |
1?4 |
=n2+n+
4 |
3 |