![](http://hiphotos.baidu.com/zhidao/pic/item/4afbfbedab64034fe22baf82acc379310b551d4b.jpg)
∵∠BAC=2∠ACB,
∴∠ACB=45°,
在△ABC中,∠ABC=180°-∠ACB-∠BAC=45°,
∴∠ACB=∠ABC,
∴AB=AC(等角對(duì)等邊);
②當(dāng)∠DAC=15°時(shí),
∠DAB=90°-15°=75°,
∵BD=BA,
∴∠BAD=∠BDA=75°,
∴∠DBA=180°-75°-75°=30°,
∴∠DBC=45°-30°=15°,即∠DBC=15°,
∴∠DBC的度數(shù)為15°;
③∵∠DBC=15°,∠ABC=45°,
∴∠DBC=15°,∠ABC=45°,
∴∠DBC:∠ABC=1:3,
∴∠DBC與∠ABC度數(shù)的比值為1:3.
(2)猜想:∠DBC與∠ABC度數(shù)的比值與(1)中結(jié)論相同.
![](http://hiphotos.baidu.com/zhidao/pic/item/42a98226cffc1e172c59e1b54990f603728de954.jpg)
證明:如圖2,作∠KCA=∠BAC,過B點(diǎn)作BK∥AC交CK于點(diǎn)K,連接DK.
∴四邊形ABKC是等腰梯形,
∴CK=AB,
∵DC=DA,
∴∠DCA=∠DAC,
∵∠KCA=∠BAC,
∴∠KCD=∠3,
∴△KCD≌△BAD,
∴∠2=∠4,KD=BD,
∴KD=BD=BA=KC.
∵BK∥AC,
∴∠ACB=∠6,
∵∠BAC=2∠ACB,且∠KCA=∠BAC,
∴∠KCB=∠ACB,
∴∠5=∠ACB,
∴∠5=∠6,
∴KC=KB,
∴KD=BD=KB,
∴∠KBD=60°,
∵∠ACB=∠6=60°-∠1,
∴∠BAC=2∠ACB=120°-2∠1,
∵∠1+(60°-∠1)+(120°-2∠1)+∠2=180°,
∴∠2=2∠1,
∴∠DBC與∠ABC度數(shù)的比值為1:3.