令f(x)=x2+2x+b=0,由題意b≠0且△>0,解得b<1且b≠0.
(2)設(shè)所求圓的一般方程為x2+y2+Dx+Ey+F=0
令y=0得x2+Dx+F=0這與x2+2x+b=0是同一個方程,故D=2,F(xiàn)=b.
令x=0得y2+Ey+F=0,方程有一個根為b,代入得出E=-b-1.
所以圓C的方程為x2+y2+2x-(b+1)y+b=0.
(3)圓C必過定點,證明如下:
假設(shè)圓C過定點(x0,y0)(x0,y0不依賴于b),將該點的坐標代入圓C的方程,
并變形為x02+y02+2x0-y0+b(1-y0)=0(*)
為使(*)式對所有滿足b<1(b≠0)的b都成立,必須有1-y0=0,結(jié)合(*)式得x02+y02+2x0-y0=0,解得
|
|
經(jīng)檢驗知,(-2,1)和(0,1)均在圓C上,因此圓C過定點(-2,1)和(0,1).