∵梯形ABCD,AD∥BC,AB⊥BC
∴四邊形ABED是矩形,
∴DE=AB=2,BE=AD=1,
∴CE=BC-BE=2,
∴DC=2
2 |
∵四邊形PCQD是平行四邊形,
若對角線PQ、DC相等,則四邊形PCQD是矩形,
設PB=x,則AP=2-x,
在Rt△DPC中,PD2+PC2=DC2,即x2+32+(2-x)2+1=8,
化簡得x2-2x+3=0,
∵△=(-2)2-4×1×3=-8<0,
∴方程無解,
∴對角線PQ與DC不可能相等.
問題2:如圖2,在平行四邊形PCQD中,設對角線PQ與DC相交于點G,
則G是DC的中點,
過點Q作QH⊥BC,交BC的延長線于H,
∵AD∥BC,
∴∠ADC=∠DCH,即∠ADP+∠PDG=∠DCQ+∠QCH,
∵PD∥CQ,
∴∠PDC=∠DCQ,
∴∠ADP=∠QCH,
又∵PD=CQ,
∴Rt△ADP≌Rt△HCQ,
∴AD=HC,
∵AD=1,BC=3,
∴BH=4,
∴當PQ⊥AB時,PQ的長最小,即為4.
問題3:如圖2′,設PQ與DC相交于點G,
∵PE∥CQ,PD=DE,
∴
DG |
GC |
PD |
CQ |
1 |
2 |
∴G是DC上一定點,
作QH⊥BC,交BC的延長線于H,
同理可證∠ADP=∠QCH,
∴Rt△ADP∽Rt△HCQ,
即
AD |
CH |
PD |
CQ |
1 |
2 |
∴CH=2,
∴BH=BC+CH=3+2=5,
∴當PQ⊥AB時,PQ的長最小,即為5.
問題4:如圖3,設PQ與AB相交于點G,
∵PE∥BQ,AE=nPA,
∴
PA |
BQ |
AG |
BG |
1 |
n+1 |
∴G是AB上一定點,
作QH∥CD,交CB的延長線于H,過點C作CK⊥CD,交QH的延長線于K,
∵AD∥BC,AB⊥BC,
∴∠D=∠QHC,∠DAP+∠PAG=∠QBH+∠QBG=90°,∠PAG=∠QBG,
∴∠QBH=∠PAD,
∴△ADP∽△BHQ,
∴
AD |
BH |
PA |
BQ |
1 |
n+1 |
∵AD=1,
∴BH=n+1,
∴CH=BH+BC=3+n+1=n+4,
過點D作DM⊥BC于M,
則四邊形ABMD是矩形,
∴BM=AD=1,DM=AB=2
∴CM=BC-BM=3-1=2=DM,
∴∠DCM=45°,
∴∠KCH=45°,
∴CK=CH?cos45°=
| ||
2 |
∴當PQ⊥CD時,PQ的長最小,最小值為
| ||
2 |