2 |
2x+1 |
則f(0)=a-1=0,
解得:a=1,
當a=1時,f(x)=1-
2 |
2x+1 |
2x?1 |
2x+1 |
故存在a=1使函數(shù)f(x)為奇函數(shù).
(2)設x1<x2,則2x1+1>0,2x2+1>0,2x1<2x2
∴f(x1)-f(x2)=a-
2 |
2x1+1 |
2 |
2x2+1 |
=
2 |
2x2+1 |
2 |
2x1+1 |
2(2x1?2x2) |
(2x1+1)(2x2+1) |
即f(x1)<f(x2),
故函數(shù)f(x)為增函數(shù)
2 |
2x+1 |
2 |
2x+1 |
2 |
2x+1 |
2x?1 |
2x+1 |
2 |
2x1+1 |
2 |
2x2+1 |
2 |
2x2+1 |
2 |
2x1+1 |
2(2x1?2x2) |
(2x1+1)(2x2+1) |