(1)因?yàn)閽佄锞€y=ax2+bx+c(a<0)經(jīng)過點(diǎn)(-1,0),
所以原式可化為a-b+c=0----①,
又因?yàn)?a+2b+c>0----②,
所以②-①得:3a+3b>0,
即a+b>0;
(2)②+①×2得,6a+3c>0,
即2a+c>0,
∴a+c>-a,
∵a<0,
∴-a>0,
故a+c>0;
(3)因?yàn)?a+2b+c>0,可以看作y=ax2+bx+c(a<0)當(dāng)x=2時(shí)的值大于0,草圖為:
可見c>0,
∵a-b+c=0,
∴-a+b-c=0,
兩邊同時(shí)加2c得-a+b-c+2c=2c,
整理得-a+b+c=2c>0,
即-a+b+c>0;
(4)∵過(-1,0),代入得a-b+c=0,
∴b2-2ac-5a2=(a+c)2-2ac-5a2=c2-4a2=(c+2a)(c-2a)
又∵4a+2b+c>0
4a+2(a+c)+c>0
即2a+c>0①
∵a<0,
∴c>0
則c-2a>0②
由①②知(c+2a)(c-2a)>0,
所以b2-2ac-5a2>0,
即b2-2ac>5a2
綜上可知正確的個(gè)數(shù)有4個(gè).
故選D.
(2003?武漢)已知:拋物線y=ax2+bx+c(a<0)經(jīng)過點(diǎn)(-1,0),且滿足4a+2b+c>0,以下結(jié)論:①a+b>0;②a+c>0;③-a+b+c>0;④b2-2ac>5a2,其中正確的個(gè)數(shù)有( ?。?A.1個(gè) B.2個(gè) C.3
(2003?武漢)已知:拋物線y=ax2+bx+c(a<0)經(jīng)過點(diǎn)(-1,0),且滿足4a+2b+c>0,以下結(jié)論:①a+b>0;②a+c>0;③-a+b+c>0;④b2-2ac>5a2,其中正確的個(gè)數(shù)有( ?。?br/>A. 1個(gè)
B. 2個(gè)
C. 3個(gè)
D. 4個(gè)
B. 2個(gè)
C. 3個(gè)
D. 4個(gè)
數(shù)學(xué)人氣:971 ℃時(shí)間:2019-11-21 16:59:26
優(yōu)質(zhì)解答
我來回答
類似推薦
- 已知拋物線y=ax²+bx+c(a<0)經(jīng)過點(diǎn)(﹣1,0),且滿足4a+2b+c>0.以下結(jié)論
- 1.已知:拋物線y=ax平方+bx+c(a0.以下結(jié)論:(1)a+b>0(2)a+c>0 (3)-a+b+c>0(4)b平方—2ac>5a平方.其中正確的個(gè)數(shù)有( )
- 已知拋物線y=ax^2+bx+c滿足4a-2b+c,則拋物線必過點(diǎn)
- 已知拋物線y=ax2+bx+c經(jīng)過(-1,2)和(3,2)兩點(diǎn),則4a+2b+3的值為_.
- 已知拋物線y=ax2+bx+c經(jīng)過(-1,2)和(3,2)兩點(diǎn),則4a+2b+3的值為_.
- 右圖中空白部分的面積比陰影部分大24平方米,求陰影部分的面積
- 不需要反映條件
- 小學(xué)英語每單元課可以分為哪幾類
- 作文《生活因母愛而精彩》400-500字
- 閱讀理解《諾貝爾文學(xué)情結(jié)》答案
- 一個(gè)梯形的下底是上底的三倍,如果將上底延長六厘米,就成一個(gè)平行四邊形,這個(gè)梯形的上底和下底是多少厘
- 月末企業(yè)銀行存款日記賬余額為180000元,銀行對賬單余額為170000元,經(jīng)過未達(dá)帳項(xiàng)調(diào)節(jié)后的余額為160000元,則對賬日企業(yè)可以動用的銀行存款實(shí)有數(shù)額為多少元?
猜你喜歡
- 1同桌抄我作業(yè)
- 2把一根木料鋸成相等的7段,每段所用的時(shí)間占鋸這根木料總時(shí)間的幾分之幾?
- 3水浴加熱 當(dāng)燒杯內(nèi)的水到100℃后試管中的水為什么不沸騰?
- 4小麗捐出了零用錢的一半多20元,這是還剩下100元,小麗求原有多少元
- 5(2X減三)平方等于根二(2X減三)的解題過程
- 6若某原子的摩爾質(zhì)量是M g/mol,則一個(gè)該原子的真實(shí)質(zhì)量約是多少?
- 71、下面___是合法的字符型常量.A.ABC$ B.“ABD”C.ABC D.ABC’
- 81比2比根號5的直角三角形,其他兩個(gè)角是多少度?
- 996-3.56-6.44 (簡便計(jì)算)
- 10翻譯The disease affected his mind so that he lost his memory.
- 11Cu與石墨做電極,HCl做電解質(zhì),能形成原電池嗎
- 12X1,X2是方程x^2-(2m-1)x+(m^2+2m-4)=0的兩個(gè)實(shí)數(shù)根,求x1^2+x2^2的最小值