因?yàn)楹瘮?shù)f(x)沒(méi)有零點(diǎn),所以△=m2-4m<0,所以0<m<4.(4分)
(2)f'(x)=(2x+m)ex+(x2+mx+m)ex=(x+2)(x+m)ex,
令f'(x)=0,得x=-2,或x=-m,
當(dāng)m>2時(shí),-m<-2.列出下表:
x | (-∞,-m) | -m | (-m,-2) | -2 | (-2,+∞) |
f'(x) | + | 0 | - | 0 | + |
f(x) | ↗ | me-m | ↘ | (4-m)e-2 | ↗ |
當(dāng)m=2時(shí),f'(x)=(x+2)2ex≥0,f(x)在R上為增函數(shù),
所以f(x)無(wú)極大值.(7分)
當(dāng)m<2時(shí),-m>-2.列出下表:
x | (-∞,-2) | -2 | (-2,-m) | -m | (-m,+∞) |
f'(x) | + | 0 | - | 0 | + |
f(x) | ↗ | (4-m)e-2 | ↘ | me-m | ↗ |
所以g(m)=
|
(3)當(dāng)m=0時(shí),f(x)=x2ex,令?(x)=ex-1-x,則?'(x)=ex-1,
當(dāng)x>0時(shí),φ'(x)>0,φ(x)為增函數(shù);當(dāng)x<0時(shí),φ'(x)<0,φ(x)為減函數(shù),
所以當(dāng)x=0時(shí),φ(x)取得最小值0.(13分)
所以φ(x)≥φ(0)=0,ex-1-x≥0,所以ex≥1+x,
因此x2ex≥x2+x3,即f(x)≥x2+x3.(16分)