精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,求證:BC是△ADC的外接圓的切線.

    如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,求證:BC是△ADC的外接圓的切線.
    (2)△BDC的外接圓的切線是哪一條?為什么?
    (3)若AC=5,BC=12,以C為圓心做圓C,使圓C與AB相切,則圓C的半徑是多少?
    急急急~求過程!
    數(shù)學(xué)人氣:336 ℃時間:2019-08-17 21:12:55
    優(yōu)質(zhì)解答
    證明:(1)設(shè)△ADC的外接圓為○1
    ∵點A、D、C都在○1上,且AD⊥DC
    ∴AC為○1的直徑
    又∵BC⊥AC
    ∴BC為△ADC的外接圓的切線
    證畢
    (2)
    同理 設(shè))△BDC的外接圓為○2
    ∵點B、D、C都在○2上,且BD⊥DC
    ∴BC為○2的直徑
    又∵AC⊥BC
    ∴AC為)△BDC的外接圓的切線
    證畢
    (3)若以C點為圓心,使圓C與AB相切,那么必須使圓的半徑與AB垂直,
    所以只能取CD為圓的半徑
    Rt△ABC的面積=AC*BC/2=AB*CD/2
    即5*12/2=13*CD/2
    可解出CD=60/13
    希望我的回答對你有所幫助
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版