對于f(x)=sin2x+cos4x,f(x+
)=sin2(x+
)+cos4(x+
)=sin(2x+π)+cos(4x+2π)=-sin2x+cos4x≠f(x)
∴
不是函數(shù)y=sin2x+cos4x的周期,故A排除
對于y=sin2xcos4x,f(x+
)=sin2(x+
)cos4(x+
)=sin(2x+π)cos(4x+2π)=-sin2xcos4x≠f(x)
∴
不是函數(shù)y=sin2xcos4x的周期,故B排除
對于f(x)=sin2x+cos2x,f(x+
)=sin2(x+
)+cos2(x+
)=sin(2x+π)+cos(2x+π)=-sin2x-cos2x≠f(x)
∴
不是函數(shù)y=sin2x+cos2x的周期,故C排除
故選D.