證明:連接OC
∵OB=OC
∴∠OBC=∠OCB
∵OD∥BC
∴∠AOD=∠OBC,∠COD=∠OCB
∴∠AOD=∠COD
∵OA=OC,OD=OD
∴△AOD≌△COD (SAS)
∴∠OCD=∠OAD
∵AD切圓O于A
∴∠OAD=90
∴∠OCD=90
∴CD是圓O的切線
數(shù)學(xué)輔導(dǎo)團解答了你的提問,
如圖,AB為圓O的直徑,AD切圓O于點A,圓O的弦BC平行于OD
如圖,AB為圓O的直徑,AD切圓O于點A,圓O的弦BC平行于OD
求證:DC是圓O的切線
求證:DC是圓O的切線
數(shù)學(xué)人氣:702 ℃時間:2019-11-07 17:02:11
優(yōu)質(zhì)解答
我來回答
類似推薦
- 如圖,⊙O的直徑AB=4,BC切⊙O于點B,OC平行于弦AD,OC=5,則AD的長為( ?。?A.65 B.85 C.75 D.235
- 如圖,AB是圓O的直徑,BC是弦,OD⊥BC于點E,交弧BC于點D
- 如圖,AB是⊙O的直徑,BC是弦,延長BC到D,使CD=BC,CE切⊙O于點C,交AD于E,求證:CE⊥AD.
- 如圖,已知⊙O的直徑AB垂直于弦CD于E,連接AD、BD、OC、OD,且OD=5. (1)若sin∠BAD=3/5,求CD的長; (2)若∠ADO:∠EDO=4:1,求扇形OAC(陰影部分)的面積(結(jié)果保留π).
- 如圖,在圓O中,半徑oa垂直于弦bc,垂足為d,od=4,ad=1,求bc和ab
- 定語從句引導(dǎo)詞what和that的區(qū)別,麻煩詳細一點
- 在兩位數(shù)中,個位數(shù)字與十位數(shù)字奇偶性不同的數(shù)共有_個.
- 不等式
- 石壕吏杜甫遭遇
- 已知函數(shù)f(x)=2sin(ωx+φ),x∈R,其中ω>0,-π
- 1.夏季,為了節(jié)約用電,常對空調(diào)采取調(diào)高設(shè)定溫度和清洗設(shè)備兩種措施,某賓館先把甲乙兩種空調(diào)的設(shè)定溫度都調(diào)高1℃,結(jié)果甲種空調(diào)比乙種空調(diào)每天多節(jié)電27度,在對乙種空調(diào)清洗設(shè)備,使得乙種空調(diào)每天的總節(jié)電量只將溫度調(diào)高1℃后的節(jié)電量的1.1倍,而
- 如何已知導(dǎo)數(shù)求原函數(shù)
猜你喜歡
- 1先確定下列拋物線的開口方向 對稱軸及頂點再描點畫圖(在線等!)
- 2化合價規(guī)律
- 3I like black and yellow.劃線句提問(劃線部分為black and yellow )
- 43,10,16最小公倍數(shù)
- 5That team _____(not finish) walking the trail within 48 hours last time .
- 6就簡單的說說a 和an的用法,但是一定要完整.
- 7初次分配和再分配的區(qū)分
- 8甲,乙,丙三人都愛好集郵,已知甲收集了240張郵票,乙收集的比甲多25%,
- 9在一個除法算式里,被除數(shù)是除數(shù)的24倍多7,又是商的31倍多7 ,求被除數(shù),除數(shù),商,余數(shù)?
- 10填空My P .E.teacher is very ( )with us.So i am very ( )after class.
- 11美麗初三,揚帆起航作文
- 12千鳥飛絕,萬徑人蹤滅是寫哪個季節(jié)