設(shè)D,E,F是⊿ABC的角平分線(xiàn)AD,BE,CF與BC CA AB的交點(diǎn)則:
BD/DC=AB/AC(著是角平分線(xiàn)的等比定理,如需要再問(wèn)我)同理CE/EA=BC/AB
AF/FB=AC/BC.所以:BD/DC×CE/EA×AF/FB=AB/AC×BC/AB×AC/BC=1由賽瓦定理(你應(yīng)該知道塞瓦定理)的逆定理得交于一點(diǎn).
設(shè)D,E,F是⊿ABC的角平分線(xiàn)AD,BE,CF與BC CA AB的交點(diǎn)則:
BD/DC=AB/AC(著是角平分線(xiàn)的等比定理,如需要再問(wèn)我)同理CE/EA=BC/AB
AF/FB=AC/BC.所以:BD/DC×CE/EA×AF/FB=AB/AC×BC/AB×AC/BC=1由賽瓦定理(你應(yīng)該知道塞瓦定理)的逆定理得交于一點(diǎn).