精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 如題

    如題
    用數(shù)學歸納法證明:1/n+1/(1+n)+1/(n+2) +.1/n^2>1(n∈N且n>1)
    所以當n=k+1時,有:
    1/n+1/(n+1)+...+1/k^2+1/(k^2+1)+1/(k^2+2)+...+1/(k^2+2k+1)
    >1+1/(k^2+1)+1/(k^2+2)+1/(k^2+2k+1)
    這步錯了 應當從1/(n+1)開始加應當>1+1/(k^2+1)+1/(k^2+2)+1/(k^2+2k+1)-1/n
    即證明1/(k^2+1)+1/(k^2+2)+1/(k^2+2k+1)-1/n>0
    數(shù)學人氣:206 ℃時間:2019-10-29 06:21:30
    優(yōu)質(zhì)解答
    證明:
    (1)當n=2,
    1/2+1/3+1/4=13/12>1成立
    (2)假設(shè)當n=k時,即
    1/k+1/(k+1)+...+1/k^2>1
    所以當n=k+1時,有:
    1/(k+1)+...+1/k^2+1/(k^2+1)+1/(k^2+2)+...+1/(k^2+2k+1)
    =1/k+1/(k+1)+...+1/k^2+[1/(k^2+1)+1/(k^2+2)+...+1/(k^2+2k+1)-1/k]
    >1+[1/(k^2+1)+1/(k^2+2)+1/(k^2+2k+1)-1/k]
    >1+[(2k+1)/(k^2+2k+1)-1/k]
    =1+[(2k²+k-k²-2k-1)/(k²+2k+1)k]
    =1+[(k²-k-1)/(k²+2k+1)k]
    因為:
    k²-k-1>0(當k>2時)
    (k²-k-1)/(k²+2k+1)k>0
    所以:
    1/(k+1)+...+1/k^2+1/(k^2+1)+1/(k^2+2)+...+1/(k^2+2k+1)
    >1+0
    =1
    所以當n=k+1原式也成立
    綜上,有:
    1/n+1/(n+1)+1/(n+2)+…+1/n^2>1(n>1且n是整數(shù))
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版