x+b |
x?b |
∴函數(shù)的定義域為(-∞,-b)∪(b,+∞).…(3分)
(2)由(1)得f(x)的定義域是關(guān)于原點(diǎn)對稱的區(qū)間
f(-x)=loga
?x+b |
?x?b |
x?b |
x+b |
∵-f(x)=loga(
x+b |
x?b |
x?b |
x+b |
∴f(-x)=-f(x),可得f(x)為奇函數(shù).…(6分)
(3)證明:設(shè)b<x1<x2,則
f(x1)-f(x2)=loga
(x1+b)(x2?b) |
(x2+b)(x1?b) |
∵
(x1+b)(x2?b) |
(x2+b)(x1?b) |
2b(x2?x1) |
(x2+b)(x1?b) |
∴當(dāng)a>1時,f(x1)-f(x2)>0,可得f(x1)>f(x2),f(x)在(b,+∞)上為減函數(shù);
當(dāng)0<a<1時,f(x1)-f(x2)<0,可得f(x1)<f(x2),f(x)在(b,+∞)上為增函數(shù).
同理可得:當(dāng)a>1時,f(x)在(-∞,-b)上為減函數(shù);當(dāng)0<a<1時,f(x)在(-∞,-b)上為增函數(shù).
綜上所述,當(dāng)a>1時,f(x)在(-∞,-b)和(b,+∞)上為減函數(shù);當(dāng)0<a<1時,f(x)在(-∞,-b)和(b,+∞)上為增函數(shù).…(12分)