(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;
(2)x3-8y3-z3-6xyz;
(3)a2+b2+c2-2bc+2ca-2ab;
(4)a7-a5b2+a2b5-b7.
解 (1)原式=-2xn-1yn(x4n-2x2ny2+y4)
=-2xn-1yn[(x2n)2-2x2ny2+(y2)2]
=-2xn-1yn(x2n-y2)2
=-2xn-1yn(xn-y)2(xn+y)2.
(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)
=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).
(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2
=(a-b)2+2c(a-b)+c2
=(a-b+c)2.
(4)原式=(a7-a5b2)+(a2b5-b7)
=a5(a2-b2)+b5(a2-b2)
=(a2-b2)(a5+b5)
=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)
=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)
分解因式:
(1)x9+x6+x3-3;
(2)(m2-1)(n2-1)+4mn;
(3)(x+1)4+(x2-1)2+(x-1)4;
(4)a3b-ab3+a2+b2+1.
解 (1)將-3拆成-1-1-1.
原式=x9+x6+x3-1-1-1
=(x9-1)+(x6-1)+(x3-1)
=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)
=(x3-1)(x6+2x3+3)
=(x-1)(x2+x+1)(x6+2x3+3).
(2)將4mn拆成2mn+2mn.
原式=(m2-1)(n2-1)+2mn+2mn
=m2n2-m2-n2+1+2mn+2mn
=(m2n2+2mn+1)-(m2-2mn+n2)
=(mn+1)2-(m-n)2
=(mn+m-n+1)(mn-m+n+1).
(3)將(x2-1)2拆成2(x2-1)2-(x2-1)2.
原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4
=〔(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2
=〔(x+1)2+(x-1)2]2-(x2-1)2
=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).
(4)添加兩項+ab-ab.
原式=a3b-ab3+a2+b2+1+ab-ab
=(a3b-ab3)+(a2-ab)+(ab+b2+1)
=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)
=a(a-b)〔b(a+b)+1]+(ab+b2+1)
=[a(a-b)+1](ab+b2+1)
=(a2-ab+1)(b2+ab+1).
(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;
(2)x3-8y3-z3-6xyz;
(3)a2+b2+c2-2bc+2ca-2ab;
(4)a7-a5b2+a2b5-b7.
解 (1)原式=-2xn-1yn(x4n-2x2ny2+y4)
=-2xn-1yn[(x2n)2-2x2ny2+(y2)2]
=-2xn-1yn(x2n-y2)2
=-2xn-1yn(xn-y)2(xn+y)2.
(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)
=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).
(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2
?。?a-b)2+2c(a-b)+c2
=(a-b+c)2.
本小題可以稍加變形,直接使用公式(5),解法如下:
原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)
=(a-b+c)2
(4)原式=(a7-a5b2)+(a2b5-b7)
=a5(a2-b2)+b5(a2-b2)
=(a2-b2)(a5+b5)
=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)
=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)
(1)x9+x6+x3-3;
(2)(m2-1)(n2-1)+4mn;
(3)(x+1)4+(x2-1)2+(x-1)4;
(4)a3b-ab3+a2+b2+1.
解 (1)將-3拆成-1-1-1.
原式=x9+x6+x3-1-1-1
=(x9-1)+(x6-1)+(x3-1)
=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)
=(x3-1)(x6+2x3+3)
=(x-1)(x2+x+1)(x6+2x3+3).
(2)將4mn拆成2mn+2mn.
原式=(m2-1)(n2-1)+2mn+2mn
=m2n2-m2-n2+1+2mn+2mn
=(m2n2+2mn+1)-(m2-2mn+n2)
=(mn+1)2-(m-n)2
=(mn+m-n+1)(mn-m+n+1).
(3)將(x2-1)2拆成2(x2-1)2-(x2-1)2.
原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4
=〔(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2
=〔(x+1)2+(x-1)2]2-(x2-1)2
=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).
(4)添加兩項+ab-ab.
原式=a3b-ab3+a2+b2+1+ab-ab
=(a3b-ab3)+(a2-ab)+(ab+b2+1)
=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)
=a(a-b)〔b(a+b)+1]+(ab+b2+1)
=[a(a-b)+1](ab+b2+1)
=(a2-ab+1)(b2+ab+1).
1.分解因式:
(2)x10+x5-2;
(4)(x5+x4+x3+x2+x+1)2-x5.
2.分解因式:
(1)x3+3x2-4;
(2)x4-11x2y2+y2;
(3)x3+9x2+26x+24;
(4)x4-12x+323.
3.分解因式:
(1)(2x2-3x+1)2-22x2+33x-1;
(2)x4+7x3+14x2+7x+1;
(3)(x+y)3+2xy(1-x-y)-1;
(4)(x+3)(x2-1)(x+5)-20.
八年級上冊因式分解習(xí)題
八年級上冊因式分解習(xí)題
數(shù)學(xué)人氣:724 ℃時間:2019-12-26 17:29:27
優(yōu)質(zhì)解答
我來回答
類似推薦
- 八年級上冊數(shù)學(xué)因式分解(人教版)練習(xí)題
- 八年級上冊的因式分解6個小小滴計算題
- 誰幫我出20個八年級上冊的因式分解題吧.
- 八年級上冊整式的乘法與因式分解習(xí)題15.
- 八年級因式分解題
- 判斷一個數(shù)是質(zhì)數(shù)還是合數(shù),要看它什么
- 酬樂天揚州初逢席上見贈中寄希望于未來的哲理詩句是什么
- Whether i go or not,we are the best
- Are ther any books in the bag?Yes,there is__________. A.it B. one C. any D. some
- it`s cool here because wind can blows in ( ) the two windows
- 如圖,是一個幾何體的三視圖,那么這個幾何體是_.
- ”秋處露秋寒霜降”是二十四節(jié)氣歌中的一句,其中第二個”秋”指的是
猜你喜歡
- 1即是兩大洋分界線又是兩大洲分界線的海峽是哪個?
- 2甲數(shù)除以乙數(shù),商是5分之2,甲數(shù)與乙數(shù)的和是21,甲數(shù)是(),乙數(shù)是()
- 3已知f(x)=ax2+bx(a≠0)滿足f(x-1)=f(3-x)且方程f(x)=2x有兩個等根,求f(x)的解析式.
- 4請問有關(guān)趙州橋的傳說有哪些?
- 5關(guān)于interest 的英語改錯
- 6God made the integers; all else is the work of man什么意思
- 7方程0.02分之0.2x-0.2 -0.5分之x+1=3的解是()
- 8多少硫酸和多少氯化鉀高溫后反映出多少硫酸鉀和多少鹽酸.
- 9in my home all the chairs are made of b_____
- 10雷諾實驗中如何正確設(shè)置高位水槽
- 11一只掛鐘的時針長10厘米 急!
- 12they want to buy some fruit .對劃線部分提問(some fr