此函數解析式為f(x)=3sin(x/5+3π/10)
(2)問題即是否存在實數m,滿足不等式:sin{√[-(m-1)^2+4]/5+3π/10}>sin[√(-m^2+4)/5+3π/10].
首先,-(m-1)^2+4>=0,-m^2+4>=0
即|m|<=2.|m-1|=2則-1=
-3π<3π/10=<√[-(m-1)^2+4]/5+3π/10<√(-m^2+4)/5+3π/10<=4/5+3π/10<2π,
f(x)在[-3π,2π]上遞增,sin{√[-(m-1)^2+4]/5+3π/10}
f(x)在[-3π,2π]上遞增,sin{√[-(m-1)^2+4]/5+3π/10}>sin[√(-m^2+4)/5+3π/10]
所以,存在實數m,滿足不等式:sin{√[-(m-1)^2+4]/5+3π/10}>sin[√(-m^2+4)/5+3π/10],
m的取值范圍為(1/2,2].