精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知集合A={x|x2-(2m+8)x+m2-1=0},B={x|x2-4x+3=0},C={x|1≤x≤6},A含于(B∩C),求m的取值范圍.

    已知集合A={x|x2-(2m+8)x+m2-1=0},B={x|x2-4x+3=0},C={x|1≤x≤6},A含于(B∩C),求m的取值范圍.
    這一題.當(dāng)A={1}或{3}時為什么不能取?
    數(shù)學(xué)人氣:978 ℃時間:2020-06-16 09:33:08
    優(yōu)質(zhì)解答
    因為如果A={1}
    那么集合A關(guān)于x的方程就為x^2+2x+1=0
    則2m+8=2,m^2-1=1
    則沒有任何數(shù)滿足m的取值
    同理當(dāng)A={3}時,也沒有任何數(shù)滿足m的取值X^2+2x+1=0怎么來的?一元二次方程又只有一個解,那么方程就應(yīng)該是(x+1)^2=0,展開就是那個了哦,對不起了,我把那個A={1}和A={-1}的方程弄反了我可以這樣解釋嗎?因為當(dāng)A={1}時,m=-2或4 但因為解只有1個。所以Δ=0.用b^2-4ac得m=-17/4。。。所以m舍去當(dāng)A={3}時同理對,就是這個意思
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版