x |
x+1 |
令g(x)=ex-x-1,則g'(x)=ex-1
當(dāng)x≥0時g'(x)≥0,g(x)在[0,+∞)是增函數(shù)
當(dāng)x≤0時g'(x)≤0,g(x)在(-∞,0]是減函數(shù)
于是g(x)在x=0處達(dá)到最小值,因而當(dāng)x∈R時,g(x)≥g(0)時,即ex≥1+x
所以當(dāng)x>-1時,f(x)≥
x |
x+1 |
(2)由題意x≥0,此時f(x)≥0
當(dāng)a<0時,若x>-
1 |
a |
x |
ax+1 |
x |
ax+1 |
當(dāng)a≥0時,令h(x)=axf(x)+f(x)-x,則
f(x)≤
x |
ax+1 |
因?yàn)閒(x)=1-e-x,所以h'(x)=af(x)+axf'(x)+f'(x)-1=af(x)-axf(x)+ax-f(x)
(i)當(dāng)0≤a≤
1 |
2 |
h'(x)≤af(x)-axf(x)+a(x+1)f(x)-f(x)
=(2a-1)f(x)≤0,
h(x)在[0,+∞)是減函數(shù),h(x)≤h(0)=0,即f(x)≤
x |
ax+1 |
(ii)當(dāng)a>
1 |
2 |
h'(x)=af(x)-axf(x)+ax-f(x)≥af(x)-axf(x)+af(x)-f(x)=(2a-1-ax)f(x)
當(dāng)0<x<
2a?1 |
a |
x |
ax+1 |
綜上,a的取值范圍是[0,
1 |
2 |