精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 問一下∫1/cos(2x)dx如何積分

    問一下∫1/cos(2x)dx如何積分
    如題
    能不能給我解法?我這里∫ 1/cos(nx)dx答案是(1/n)(ln|cos(nx/2)-sin(nx/2)|-ln|sin(nx/2)+cos(nx/2)|)+c,這怎么解出來的?
    數(shù)學(xué)人氣:713 ℃時(shí)間:2020-05-11 02:36:42
    優(yōu)質(zhì)解答
    1/cos(nx) = 1/(cos²(nx/2) - sin²(nx/2))
    = (1/2)((cos(nx/2) - sin(nx/2))/(cos(nx/2) + sin(nx/2)) - (-cos(nx/2) - sin(nx/2))/(cos(nx/2) - sin(nx/2)))
    ∫(cos(nx/2) - sin(nx/2))/(cos(nx/2) + sin(nx/2))dx
    =(2/n)∫(1/t)dt(令(cos(nx/2) + sin(nx/2)=t)
    =(2/n)ln|t|
    =(2/n)ln|cos(nx/2) + sin(nx/2)| + C1
    同理
    ∫(-cos(nx/2) - sin(nx/2))/(cos(nx/2) - sin(nx/2))dx
    =(2/n)ln|cos(nx/2) - sin(nx/2)| + C2
    ∫1/cos(nx)dx = ∫1/(cos²(nx/2) - sin²(nx/2))dx
    = ∫(1/2)((cos(nx/2) - sin(nx/2))/(cos(nx/2) + sin(nx/2)) - (-cos(nx/2) - sin(nx/2))/(cos(nx/2) - sin(nx/2)))dx
    =(1/2)((2/n)ln|cos(nx/2) + sin(nx/2)| - (2/n)ln|cos(nx/2) - sin(nx/2)|) + C
    =(1/n)(ln|cos(nx/2) + sin(nx/2)| - ln|cos(nx/2) - sin(nx/2)|) + C

    問題補(bǔ)充:能不能給我解法?我這里∫ 1/cos(nx)dx答案是(1/n)(ln|cos(nx/2)-sin(nx/2)|-ln|sin(nx/2)+cos(nx/2)|)+c,這怎么解出來的?
    驗(yàn)證一下不就知道了,
    (1/n)(ln|cos(nx/2)-sin(nx/2)|-ln|sin(nx/2)+cos(nx/2)|)+c
    求導(dǎo) = (1/n)(n/2)
    ((-sin(nx/2)-cos(nx/2))/(cos(nx/2)-sin(nx/2))
    - (cos(nx/2)-sin(nx/2))/(sin(nx/2)+cos(nx/2)))
    =(1/2)(-2)/(cos²(nx/2) - sin²(nx/2))
    = -1/cos(nx)
    所以答案錯(cuò)了
    我來回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版