∴∠CDA=∠DCE.(1分)
又∵四邊形ABCD是等腰梯形,
∴∠BAD=∠CDA,(2分)
∴∠BAD=∠DCE.(3分)
∵AB=DC,AD=CE,
∴△BAD≌△DCE;(5分)
(2)∵AD=CE,AD∥BC,
∴四邊形ACED是平行四邊形,(7分)
∴AC∥DE.(8分)
∵AC⊥BD,
∴DE⊥BD.(9分)
由(1)可知,△BAD≌△DCE,
∴DE=BD.(10分)
所以,△BDE是等腰直角三角形,即∠E=45°,
∴DF=FE=FC+CE.(12分)
∵四邊形ABCD是等腰梯形,而AD=2,BC=4,
∴FC=
1 |
2 |
1 |
2 |
∵CE=AD=2,
∴DF=3.(14分)