精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 分子是1分母有三項相乘的分式如何裂項!

    分子是1分母有三項相乘的分式如何裂項!
    數(shù)學(xué)人氣:307 ℃時間:2020-06-18 01:14:01
    優(yōu)質(zhì)解答
    不知道你要問的是否是1/[n(n+1)(n+2)]如何裂項?比如讓求
    Sn=1/(1*2*3)+1/(2*3*4)+……+1/[n(n+1)(n+2)]
    因1/[n(n+1)(n+2)]=1/2*2/[n(n+1)(n+2)]
    =1/2*[(n+2)-n]/[n(n+1)(n+2)]
    =1/2*{1/[n(n+1)]-1/[(n+1)(n+2)]}

    Sn=1/(1*2*3)+1/(2*3*4)+……+1/[n(n+1)(n+2)]
    =1/2*[1/(1*2)-1/(2*3)]+1/2*[1/(2*3)-1/(3*4)]+……+1/2*{1/[n(n+1)]-1/[(n+1)(n+2)]}
    =1/2*{1/(1*2)-1/[(n+1)(n+2)]}
    =1/2*[(n+1)(n+2)-2]/[2(n+1)(n+2)]
    =n(n+3)/[4(n+1)(n+2)]有個題目是:1/[(2+x)(1+x)(1-x)],答應(yīng)是拆分后分母多了系數(shù),不知道怎么得出來的!!你這道題目無法用裂項法,因為:1/[(2+x)(1+x)(1-x)]=-1/[(2+x)(1+x)(x-1)],分母三個因子不是等差數(shù)列,所以裂項后無法錯位相消。所以這道題目裂項法不能湊效。似乎用其它辦法也得不出和式

    哦哦,剛剛發(fā)錯了,是這樣的

    這樣的題可用待定系數(shù)法。設(shè)1/[(2-x)(2+x)(4+x^2)]=A/(2-x)+B/(2+x)+(Cx+D)/(4+x^2)然后右端通分,令分子恒等于1,也即令x的超過1次冪以上的系數(shù)都等于0,常數(shù)項等于1,解四元一次方程組即可。像這樣的有理分式積分,一般都需要用此裂項法,裂項時待定系數(shù)法是萬能方法。如果分子最高次冪高于分母,需要用綜合除法寫成整式+真分式的形式。整式積分很easy,真分式積分時還需裂項。真分式的分子是多項式,分母必須能分解因式,且其所有因子都須是(x+a)^r的形式或(x^2+bx+c)^t的形式(b^2-4c<0)。這是因為對任意的x^2+bx+c,如果判別式≥0,則必可分解為兩個一次的乘積。對前者,裂項時只需出現(xiàn)a1/(x+a)^r+a2/(x+a)^(r-1)+……+ar/(x+a);對后者,裂項時須出現(xiàn)(b11x+b12)/(x^2+bx+c)^t+(b21x+b22)/(x^2+bx+c)^(t-1)+……+(bt1x+bt2)/(x^2+bx+c)然后再進行各項的積分。
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版