Sn=1/(1*2*3)+1/(2*3*4)+……+1/[n(n+1)(n+2)]
因1/[n(n+1)(n+2)]=1/2*2/[n(n+1)(n+2)]
=1/2*[(n+2)-n]/[n(n+1)(n+2)]
=1/2*{1/[n(n+1)]-1/[(n+1)(n+2)]}
故
Sn=1/(1*2*3)+1/(2*3*4)+……+1/[n(n+1)(n+2)]
=1/2*[1/(1*2)-1/(2*3)]+1/2*[1/(2*3)-1/(3*4)]+……+1/2*{1/[n(n+1)]-1/[(n+1)(n+2)]}
=1/2*{1/(1*2)-1/[(n+1)(n+2)]}
=1/2*[(n+1)(n+2)-2]/[2(n+1)(n+2)]
=n(n+3)/[4(n+1)(n+2)]有個題目是:1/[(2+x)(1+x)(1-x)],答應(yīng)是拆分后分母多了系數(shù),不知道怎么得出來的!!你這道題目無法用裂項法,因為:1/[(2+x)(1+x)(1-x)]=-1/[(2+x)(1+x)(x-1)],分母三個因子不是等差數(shù)列,所以裂項后無法錯位相消。所以這道題目裂項法不能湊效。似乎用其它辦法也得不出和式
哦哦,剛剛發(fā)錯了,是這樣的