x2+cosx+1?sinx |
x2+cosx+1 |
sinx |
x2+ cosx+1 |
令g(x)=
sinx |
x2+cosx+1 |
g(?x)=
sin(?x) |
(?x)2+cos(?x)+1 |
∴函數(shù)g(x)為奇函數(shù),圖象關(guān)于原點對稱,最大值與最小值也關(guān)于原點對稱,即函數(shù)g(x)的最值的和為0
∵f(x)=1-g(x)
∴M+m=1-g(x)min+1-g(x)max=2
故答案為:2
x2+cosx?sinx+1 |
x2+cosx+1 |
x2+cosx+1?sinx |
x2+cosx+1 |
sinx |
x2+ cosx+1 |
sinx |
x2+cosx+1 |
sin(?x) |
(?x)2+cos(?x)+1 |