∴不等式(m+1)x2-mx+m-1≤0恒成立
①當(dāng)m+1=0時(shí),(m+1)x2-mx+m-1≤0,即x≤2,不是對(duì)任意x∈R恒成立;
②當(dāng)m+1≠0時(shí),?x∈R,使(m+1)x2-mx+m-1≤0,
即m+1<0且△=(-m)2-4(m+1)(m-1)≤0,
化簡(jiǎn)得:3m2≥4,解得m≥
2
| ||
3 |
2
| ||
3 |
∴m≤-
2
| ||
3 |
綜上,實(shí)數(shù)m的取值范圍是m≤-
2
| ||
3 |
故答案為:(-∞,-
2
| ||
3 |
2
| ||
3 |
2
| ||
3 |
2
| ||
3 |
2
| ||
3 |
2
| ||
3 |