精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知在數(shù)列an中,a1=1/2,an+1=3an/an+3,已知bn的前n項(xiàng)和為sn

    已知在數(shù)列an中,a1=1/2,an+1=3an/an+3,已知bn的前n項(xiàng)和為sn
    ,且對任意正整數(shù)N,都有bn·n(3-4an)/an=1成立,求證,1/2≤sn<1
    數(shù)學(xué)人氣:540 ℃時(shí)間:2019-08-20 12:45:14
    優(yōu)質(zhì)解答
    a(n+1)=3a(n)/[a(n)+3],若 a(n+1)=0,則, a(n)=0, ..., a(1)=0,與a(1)=1/2矛盾.因此,a(n)不為0.1/a(n+1) = (1/3)[a(n)+3]/a(n) = 1/a(n) + 1/3,{1/a(n)}是首項(xiàng)為1/a(1)=2,公差為1/3的等差數(shù)列.1/a(n) = 2 + (n-1)/3 =...
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版