精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 求下列函數(shù)的最小正周期,值域,單調(diào)區(qū)間(1)y=sin(x+π/3) (2)y=2sin(1/2x-π/4) (3)y=cos(2x-π/6)

    求下列函數(shù)的最小正周期,值域,單調(diào)區(qū)間(1)y=sin(x+π/3) (2)y=2sin(1/2x-π/4) (3)y=cos(2x-π/6)
    (4)y=2cos(x-π/3) (5)y=sin(2x-π/6)+3 (6)y=3tan(2x-π/6)要詳細(xì)過程~
    數(shù)學(xué)人氣:121 ℃時間:2019-10-08 10:20:02
    優(yōu)質(zhì)解答
    (1) y = sin(x + π/3)
    最小正周期:T = 2π
    值域:y ∈ [-1 ,1]
    單調(diào)增區(qū)間:2kπ - π/2 ≤ x + π/3 ≤ 2kπ + π/2 ,x ∈[2kπ - 5π/6 ,2kπ + π/6]
    單調(diào)減區(qū)間:2kπ + π/2 ≤ x + π/3 ≤ 2kπ + 3π/2 ,x ∈[2kπ + π/6 ,2kπ + 7π/6]
    (2) y = 2sin(1/2x - π/4)
    最小正周期:T = 2π/(1/2) = 4π
    值域:y ∈ [-2 ,2]
    單調(diào)增區(qū)間:2kπ - π/2 ≤ x/2 - π/4 ≤ 2kπ + π/2 ,x ∈[4kπ - π/2 ,4kπ + 3π/2]
    單調(diào)減區(qū)間:2kπ + π/2 ≤ x/2 - π/4 ≤ 2kπ + 3π/2 ,x ∈[4kπ + 3π/2 ,4kπ + 7π/2]
    (3) y=cos(2x - π/6)
    最小正周期:T = 2π/2 = π
    值域:y ∈ [-1 ,1]
    單調(diào)減區(qū)間:2kπ ≤ 2x - π/6 ≤ 2kπ + π ,x ∈[kπ + π/12 ,kπ + 7π/12]
    單調(diào)增區(qū)間:2kπ + π ≤ 2x - π/6 ≤ 2kπ + 2π ,x ∈[kπ + 7π/12 ,kπ + 13π/12]
    (4) y=2cos(x - π/3)
    最小正周期:T = 2π
    值域:y ∈ [-2 ,2]
    單調(diào)減區(qū)間:2kπ ≤ x - π/3 ≤ 2kπ + π ,x ∈[2kπ + π/3 ,2kπ + 4π/3]
    單調(diào)增區(qū)間:2kπ + π ≤ x - π/3 ≤ 2kπ + 2π ,x ∈[2kπ + 4π/3 ,2kπ + 7π/3]
    (5) y=sin(2x - π/6) + 3
    最小正周期:T = 2π/2 = π
    值域:y ∈ [-1 ,1]
    單調(diào)增區(qū)間:2kπ - π/2 ≤ 2x - π/6 ≤ 2kπ + π/2 ,x ∈[2kπ - π/6 ,2kπ + π/3]
    單調(diào)減區(qū)間:2kπ + π/2 ≤ 2x - π/6 ≤ 2kπ + 3π/2 ,x ∈[2kπ + π/3 ,2kπ + 5π/6]
    (6) y = 3tan(2x - π/6)
    最小正周期:T = π/2
    值域:y ∈ (-∞ ,+∞)
    單調(diào)增區(qū)間:kπ - π/2 < 2x - π/6 < kπ + π/2 ,x ∈(kπ/2 - π/6 ,kπ/2 + 2π/6)
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版