∵BC⊥平面ABB1A1,
A1B∈平面ABB1A1,
∴BC⊥A1B,
△A1BC是RT△,
設棱長為1,A1B=√2,A1C=√3,
BE*A1C/2=A1B*BC/2=△A1BC,
BE=√6/3,
同理△A1DC也是RT△,
顯然,RT△A1BC≌RT△A1DC,
則DE⊥A1C,
A1C⊥平面BDE,
EO∈平面BDE
A1C⊥EO,
則〈BEO是二面角B-A1C-A的平面角,
DE=BE=√6/3,
BD=√2,
BO=√2/2,
在△BEO中,
sin<OEB=OB/BE=(√2/2)/(√6/3)=√3/2,
〈OEB=60°,
∴二面角B-A1C-A的大小為60度.
![](http://c.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=acbb8652b9389b5038aae854b505c9e5/0df3d7ca7bcb0a46687517756b63f6246b60af23.jpg)