過D作DF⊥CB,交CB于點F,
∵DA與DC都為圓O的切線,
∴DA=DE,
又CB與CE都為圓O的切線,
∴CB=CE,
又∠DAB=∠ABF=∠BFD=90°,
∴四邊形ABFD為矩形,
∴DA=FB,DF=AB,
在直角三角形CDF中,
∵AD=x,BC=y,AB=12,
∴CD=CE+ED=DA+CB=x+y,DF=AB=12,CF=CB-FB=y-x,
根據(jù)勾股定理得:CD2=DF2+CF2,
即(x+y)2=122+(y-x)2,
化簡得:xy=36,即y=
36 |
x |
在平面直角坐標(biāo)系中畫出函數(shù)圖象,如圖所示.