2sinx(1?sinx) |
3?(1?2sin2x)+4sinx |
?sin2x+sinx |
sin2x+2sinx+1 |
設t=sinx,則由x∈(0,
π |
2 |
對于y=
?t2+t |
t2+2t+1 |
?(t+1)2+3(t+1)?2 |
(t+1)2 |
=-1+
3 |
t+1 |
2 |
(t+1)2 |
令
1 |
t+1 |
1 |
2 |
則y=-2m2+3m-1=-2(m-
3 |
4 |
1 |
8 |
當m=
3 |
4 |
1 |
2 |
1 |
8 |
當m=
1 |
2 |
∴0<y≤
1 |
8 |
1 |
8 |
2sinx(1?sinx) |
3?cos2x+4sinx |
π |
2 |
2sinx(1?sinx) |
3?(1?2sin2x)+4sinx |
?sin2x+sinx |
sin2x+2sinx+1 |
π |
2 |
?t2+t |
t2+2t+1 |
?(t+1)2+3(t+1)?2 |
(t+1)2 |
3 |
t+1 |
2 |
(t+1)2 |
1 |
t+1 |
1 |
2 |
3 |
4 |
1 |
8 |
3 |
4 |
1 |
2 |
1 |
8 |
1 |
2 |
1 |
8 |
1 |
8 |