P=[(n+1)(n+2)(n+3).(n+n)/n^n]^(1/n)
={[(n+1)/n][(n+2)/n][(n+3)/n].[(n+n)/n]}^(1/n)
=[(1+1/n)(1+2/n)(1+3/n).(1+n/n)]^(1/n)
取自然對數(shù),
lnP=(1/n)[ln(1+1/n)+ln(1+2/n)+ln(1+3/n)+.+ln(1+n/n)]
設f(x)=ln(1+x),
則P=[f(1/n)+f(2/n)+...+f(n/n)]/n,
當n→∞時,
![](http://a.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=85c67ca338f33a879e38081cf66c3c00/29381f30e924b899f9fe86ab6c061d950b7bf667.jpg)
應用分部積分法可求得
![](http://d.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=7e00785841166d2238221d92761325cf/aa64034f78f0f7368438b3920855b319eac4135a.jpg)
則當n→∞時,lnP=ln(4/e),即P=4/e.