精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知a,b,c屬于R,a+b+c=1,求證a^2+b^2+c^2>=1/3謝謝了,大神幫忙啊

    已知a,b,c屬于R,a+b+c=1,求證a^2+b^2+c^2>=1/3謝謝了,大神幫忙啊
    謝謝,過程請寫出來(*^__^*) 嘻嘻……
    其他人氣:405 ℃時間:2020-07-09 21:07:21
    優(yōu)質解答
    只能證明a^2+b^2+c^2>≥1/3 證明:a*a+b*b≥[(a+b)(a+b)]/2 同理b*b+c*c a*a+c*c 三式相加可得a*a+b*b+c*c≥[(a+b)平方+(b+c)平方+ (a+c)平方]/4 因為a,b,c ∈ R ,且 a+b+c=1 ,所以a+b=1-c ,b+c=1-a ,a+c=1-b.∴4(a平方+b平方+c平方)≥(1-c)平方+(1-a)平方+(1-b)平方 ∴3(a平方+b平方+c平方)≥1 ∴a平方+b平方+c平方≥1/3 ∴原命題得證.
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版