∴AC=CE,BC=CF,∠ECA=∠BCF=60°,
∴∠ECA-∠FCA=∠BCF-∠FCA,
即∠ACB=∠ECF,
∵在△ACB和△ECF中
|
∴△ACB≌△ECF(SAS),
∴EF=AB,
∵三角形ABD是等邊三角形,
∴AB=AD,
∴EF=AD=AB,
同理FD=AE=AC,
即EF=AD,DF=AE,
∴四邊形AEFD是平行四邊形.
(2)當(dāng)△ABC是等腰三角形時(shí),平行四邊形AEFD是菱形,理由如下:
∵由(1)知:四邊形AEFD是平行四邊形,EF=AD=AB,F(xiàn)D=AE=AC
∴AB=AC,
∴EF=FD,
∴平行四邊形AEFD是菱形,
故答案為:等腰.
(3)當(dāng)∠BAC=150°時(shí),平行四邊形AEFD是矩形,理由如下:
∵△ADB和△ACE是等邊三角形,
∴∠DAB=∠EAC=60°,
∵∠BAC=150°,
∴∠DAE=360°-60°-60°-150°=90°,
∵由(1)知:四邊形AEFD是平行四邊形,
∴平行四邊形AEFD是矩形,
故答案為:150°.
(4)當(dāng)∠BAC=60°時(shí),以A、E、F、D為頂點(diǎn)的四邊形不存在,理由如下:
∵∠DAB=∠EAC=60°(已證),∠BAC=60°,
∴∠DAE=60°+60°+60°=180°,
∴D、A、E三點(diǎn)共線,
即邊DA、AE在一條直線上,
∴當(dāng)∠BAC=60°時(shí),以A、E、F、D為頂點(diǎn)的四邊形不存在,
故答案為:60°.