![](http://hiphotos.baidu.com/zhidao/pic/item/9d82d158ccbf6c819bbc9567bf3eb13532fa40b1.jpg)
證明:
證法一:連接OD;
∵BC切⊙O于D,
∴OD⊥BC,
又△ABC為Rt△,且∠C=90°,
∴AC⊥BC,
∴OD∥AC,
∴∠1=∠2;
又∵OA=OD,
∴∠3=∠2,
∴∠1=∠3.
證法二:連接ED;
∵AE是⊙O直徑,
∴∠ADE=90°,
∴∠3+∠AED=90°;
又∵∠C=90°,
∴∠1+∠ADC=90°,
又∵∠AED=∠ADC,
∴∠1=∠3.
![](http://hiphotos.baidu.com/zhidao/pic/item/728da9773912b31bca8774a68518367adbb4e152.jpg)
證法三:連接EF,DF;
∵AE是⊙O直徑,
∴∠AFE=90°,
又∵∠ACE=90°,
∴∠AFE=∠ACB,
∴EF∥BC,
∴∠4=∠5;
又∵∠3=∠4,∠1=∠5,
∴∠1=∠3.
(2)
解法一:設(shè)BE=x,則BD=3BE=3x,
據(jù)切割線定理得BD2=BE×BA,
得AB=9x,OA=OE=4x;
又∵OD∥AC,
∴
OB |
OA |
BD |
CD |
5x |
4x |
3x |
3 |
∴x=
5 |
4 |
∴⊙O的半徑為5.
解法二:
如圖,過O作OG⊥AC,又AC⊥BC,OD⊥BC,
則四邊形ODCG為矩形.
∴OG=CD=3,OG∥BC;
又OG∥BC,
∴
OG |
BC |
OA |
AB |
∴
3 |
3x+3 |
4x |
9x |
∴x=
5 |
4 |
∴⊙O的半徑為5.
備注:本解法是在解法一得AB=9x,OA=OE=4x的基礎(chǔ)上進行的.