需要指明求哪個(gè)區(qū)間的面積,不然會(huì)重復(fù)出現(xiàn)很多個(gè)同樣的面積.面積不就是無(wú)限大嗎?
那莪只做- π 到 2π的部分了
解3cosx = 1 + cosx
x = - π/3,π/3,5π/3
在x∈[- π/3,π/3]圍成的面積,3cosx > 1 + cosx
= ∫(- π/3→π/3) [3cosx - (1 + cosx)] dx
= 2√3 - 2π/3
在x∈[π/3,5π/3]圍成的面積,1 + cosx > 3cosx
= ∫(π/3→5π/3) [(1 + cosx) - 3cosx] dx
= 2√3 + 4π/3
所以公共部分的面積
= n * [(2√3 - 2π/3) + (2√3 + 4π/3)],n∈整數(shù)
= n * (4√3 + 2π/3),只好這樣表示了,共有n個(gè)這樣的面積
書上答案為什么會(huì)是這樣的呢?
原來(lái)是極坐標(biāo)的形式,開(kāi)始真沒(méi)看清楚了。。。{ r = 3cosθ{ r = 1 + cosθ3cosθ = 1 + cosθcosθ = 1/2θ = π/3 或 2π - π/3 = 5π/3交點(diǎn)為(3/2,π/3)和(3/2,5π/3)∴陰影面積= 2[∫(0→π/3) (1/2)(3cosθ)² dθ + ∫(π/3→π/2) (1/2)(1 + cosθ)² dθ]= (9/2)∫(0→π/3) (1 + cos2θ) dθ + ∫(π/3→π/2) (1 + 2cosθ + cos²θ) dθ= (9/2)[θ + sinθcosθ] |(0→π/3) + [θ + 2sinθ + (1/2)(θ + sinθcosθ)] |(π/3→π/2)= (9/2)[π/3 + (√3/2)(1/2)] + [π/2 + 2 + (1/2)(π/2)] - [π/3 + √3 + (1/2)(π/3 + (√3/2)(1/2))]= 2 + 7π/4