2 |
1?x |
∴f(x)=lg(
2 |
1?x |
2 |
1?x |
1+x |
1?x |
2 |
1?x |
設-1<x1<x2<1,t1?t2=
2 |
1?x1 |
2 |
1?x2 |
2(x1?x2) |
(1?x1)(1?x2) |
∴t1<t2,∴l(xiāng)gt1<lgt2∴f(x1)<f(x2),故y=f(x)在(-1,1)上是單調增函數(shù)
又∵f(x)是奇函數(shù),∴f(0)=0,則f(x)<0化為
1+x |
1?x |
1+x |
1?x |
2x |
1?x |
故解集為:(-1,0).
2 |
1?x |
2 |
1?x |
2 |
1?x |
2 |
1?x |
1+x |
1?x |
2 |
1?x |
2 |
1?x1 |
2 |
1?x2 |
2(x1?x2) |
(1?x1)(1?x2) |
1+x |
1?x |
1+x |
1?x |
2x |
1?x |