?2x+b |
2x+1+a |
∴f(0)=0,f(1)=-f(-1),
即
|
解得a=2,b=1
(II)由(I)得f(x)=
?2x+1 |
2x+1+2 |
1 |
2 |
1 |
2x+1 |
∵y=2x為增函數(shù),
∴y=2x+1為增函數(shù),
∴y=
1 |
2x+1 |
∴函數(shù)f(x)為減函數(shù)
若f(5-2x)+f(3x+1)<0
則f(5-2x)<-f(3x+1)=f(-3x-1)
則5-2x>-3x-1
解得x>-6
?2x+b |
2x+1+a |
?2x+b |
2x+1+a |
|
?2x+1 |
2x+1+2 |
1 |
2 |
1 |
2x+1 |
1 |
2x+1 |