已知點(diǎn)A,B的坐標(biāo)分別是(-1,0),(1,0),直線AM,BM相交于點(diǎn)M,且直線AM與直線BM的斜率之差是2,則點(diǎn)M的軌跡方程是( ?。?A.x2=-(y-1) B.x2=-(y-1)(x≠±1) C.xy=x2-1 D.xy=x2-1(
已知點(diǎn)A,B的坐標(biāo)分別是(-1,0),(1,0),直線AM,BM相交于點(diǎn)M,且直線AM與直線BM的斜率之差是2,則點(diǎn)M的軌跡方程是( ?。?br/>A. x2=-(y-1)
B. x2=-(y-1)(x≠±1)
C. xy=x2-1
D. xy=x2-1(x≠±1)
優(yōu)質(zhì)解答
設(shè)M(x,y),則k
BM=
(x≠1),k
AM=
(x≠-1),
直線AM與直線BM的斜率之差是2,
所以k
AM-k
BM=2,
?=2,(x≠±1),
整理得x
2+y-1=0 (x≠±1).
故選B.
我來回答
類似推薦