1 |
xlna |
∵h(yuǎn)(x)=f(x)-g(x)在定義域上為減函數(shù)
∴h′(x)≤0在(0,+∞)上恒成立即
1 |
lna |
即
1 |
lna |
令u(x)=-x2+2x=-(x-1)2+1≤1
∴
1 |
lna |
∵h(yuǎn)′(x)存在零點
∴x2?2x+
1 |
lna |
∴△=4(1?
1 |
lna |
∴
1 |
lna |
∴l(xiāng)na=1即a=e
(II)∵g(x)=lnx,p(x)=ex
令F(x)=ex(x?x2)?ex+ex2(x<x2)
F′(x)=ex+exx-x2ex-ex=(x-x2)ex<0
∴F(x)在(-∞,x2)上遞減
∴ex1(x1?x2)>ex1?ex2
即ex1<
ex1?ex2 |
x1?x2 |
同理
ex1?ex2 |
x1?x2 |
所以有P(x1)<P(x0)<P(x2)