過B作BE⊥AC,E為垂足,∴|AE|=|AC|-|CE|=|AC|-|BD|=a-b,
又|AB|=|FA|+|FB|=a+b,∠BAE=∠AFx=60°.
在直角△AEB中,cos∠BAE=
|AE| |
|AB| |
a?b |
a+b |
∴a=3b
∴
a |
b |
②設(shè)直線方程為x=my+
p |
2 |
設(shè)A(x1,y1),B(x2,y2),則y1+y2=2pm,∴x1+x2=2pm2+p
∴a+b=|AB|=x1+x2+p=2pm2+2p
當θ≠
π |
2 |
1 |
m |
1 |
tanθ |
2p(tan2θ+1) |
tan2θ |
2p |
sin2θ |
當θ=
π |
2 |
故答案為:3;
2p |
sin2θ |