精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 標(biāo)準(zhǔn)正態(tài)分布的Q函數(shù)用 matlab 怎么寫

    標(biāo)準(zhǔn)正態(tài)分布的Q函數(shù)用 matlab 怎么寫
    標(biāo)準(zhǔn)正態(tài)分布從x到無窮大積分 也就是Q函數(shù) 用matlab怎么寫吖 還有它的反函數(shù)怎么寫
    其他人氣:520 ℃時間:2020-05-30 16:20:30
    優(yōu)質(zhì)解答
    Matlab中本身有Q函數(shù),即qfunc() 其反函數(shù)是qfuncinv()
    --------------------------------
    help qfunc
    qfunc
    Q function
    Syntax
    y = qfunc(x)
    Description
    y = qfunc(x) is one minus the cumulative distribution function of the standardized normal random variable,evaluated at each element of the real array x.For a scalar x,the formula is
    The Q function is related to the complementary error function,erfc,according to
    Examples
    The example below computes the Q function on a matrix,element by element.
    x = [0 1 2; 3 4 5];
    format short e % Switch to floating point format for displays.
    y = qfunc(x)
    format % Return to default format for displays.
    The output is below.
    y =
    5.0000e-001 1.5866e-001 2.2750e-002
    1.3499e-003 3.1671e-005 2.8665e-007
    --------------------------------------------
    help qfuncinv
    qfuncinv
    Inverse Q function
    Syntax
    y = qfuncinv(x)
    Description
    y = qfuncinv(x) returns the argument of the Q function at which the Q function's value is x.The input x must be a real array with elements between 0 and 1,inclusive.
    For a scalar x,the Q function is one minus the cumulative distribution function of the standardized normal random variable,evaluated at x.The Q function is defined as
    The Q function is related to the complementary error function,erfc,according to
    Examples
    The example below illustrates the inverse relationship between qfunc and qfuncinv.
    x1 = [0 1 2; 3 4 5];
    y1 = qfuncinv(qfunc(x1)) % Invert qfunc to recover x1.
    x2 = 0:.2:1;
    y2 = qfunc(qfuncinv(x2)) % Invert qfuncinv to recover x2.
    The output is below.
    y1 =
    0 1 2
    3 4 5
    y2 =
    0 0.2000 0.4000 0.6000 0.8000 1.0000
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版