x?y |
1?xy |
∴令x=y,則f(x)-f(x)=f(0),即f(0)=0,
令x=0,則f(0)-f(y)=f(-y),即f(-y)=-f(y),
∴f(x)在(-1,1)是奇函數(shù),
∵當x∈(-1,0)時,有f(x)>0,
∴當x∈(0,1)時,有f(x)<0.
令x=
1 |
n |
1 |
n+1 |
1 |
n |
1 |
n+1 |
| ||||
1?
|
1 |
n2+n?1 |
∴f(
1 |
5 |
1 |
11 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2 |
1 |
4 |
∴P-Q=-f(
1 |
4 |
∵P,Q<0,
∴R>P>Q.
故答案為:R>P>Q.