∴
c |
a |
1 |
4 |
∵5c-3a≤4c-a,
∴
c |
a |
從而
b |
a |
b |
a |
又clnb≥a+clnc,
∴0<a≤cln
b |
c |
從而
b |
a |
| ||
ln
|
x |
lnx |
∵f′(x)=
lnx?1 |
(lnx)2 |
∴當(dāng)x=e時(shí),f(x)取到極小值,也是最小值.
∴f(x)min=f(e)=
e |
lne |
等號(hào)當(dāng)且僅當(dāng)
b |
c |
b |
a |
b |
a |
從而
b |
a |
b |
a |
c |
a |
1 |
4 |
c |
a |
b |
a |
b |
a |
b |
c |
b |
a |
| ||
ln
|
x |
lnx |
lnx?1 |
(lnx)2 |
e |
lne |
b |
c |
b |
a |
b |
a |
b |
a |