先求dx/dt,dy/dt,之后由后者比上前者,就可得到dy/dx
對(duì)等式:x=t(1-sint) 兩側(cè)同時(shí)求t的導(dǎo)數(shù):
dx/dt=d[t(1-sint)]/dt
=(dt/dt)*(1-sint)+t*d(1-sint)/dt
=1*(1-sint)-t*cost
=1-sint-tcost
對(duì)等式: y=tcost 兩側(cè)同時(shí)求t的導(dǎo)數(shù):
dy/dt=d(tcost)
=(dt/dt)*cost+t*d(cost)/dt
=cost-tsint
∴dy/dx=(dy/dt)/(dy/dx)=(cost-tsint)/(1-sint-tcost)
請(qǐng)樓主注意,dy/dx并不一定必須只含x項(xiàng),由已知,可知x是t的函數(shù),意味著完全可以用x來(lái)表示t,兩者之間存在確定的函數(shù)關(guān)系,上式中,dy/dx 的表達(dá)式中只含有t,而t一定以由x確定,這不過(guò)這個(gè)關(guān)系不好用直接的方式表示出來(lái),故用t直接表示x也是沒(méi)問(wèn)題的,樓主再考試時(shí)這樣寫(xiě)毫無(wú)問(wèn)題!
求參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)dy/dx
求參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)dy/dx
x=t(1-sint),y=tcost.
x=t(1-sint),y=tcost.
數(shù)學(xué)人氣:412 ℃時(shí)間:2019-08-17 01:42:33
優(yōu)質(zhì)解答
我來(lái)回答
類似推薦
- 求參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)dy/dx
- 求參數(shù)方程所確定的函數(shù)y=f(x)的導(dǎo)數(shù)dy/dx
- 求由參數(shù)方程所確定的函數(shù){x=tlnt y=t^2lnt的導(dǎo)數(shù)dy/dx
- 參數(shù)函數(shù)導(dǎo)數(shù)公式d(dy/dx)/dx是怎么得到的
- x=β(1-sinβ) y=βcosβ 求次參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù) dy/dx
- 甲乙兩數(shù)和是50 ,甲數(shù)的3倍于乙數(shù)的4倍的和是165,甲乙兩數(shù)是多少?
- 罐頭廠要給水果罐頭做一種圓柱形的包裝盒,已知這個(gè)罐頭盒的底面半徑為5cm,高6cm,同時(shí)要在盒的外面貼一
- 等腰三角形腰和底邊長(zhǎng)的比是3:2,若底邊長(zhǎng)為6,則底邊上的高是多少?腰上的高是多少?
- 填成語(yǔ)啊..平( )無(wú)( ) ,形( )影( ) ,()云()霧
- 一個(gè)圓柱高9分米,側(cè)面積226.08平方分米,它的底面積是多少平方分米?
- 已知cosa=1/7,cos(a+b)=13/14.且a,b屬于(0,派/2)
- 2.3g鈉由原子變成離子時(shí),失去的電子數(shù)為0.1NA(要過(guò)程)
猜你喜歡
- 1一個(gè)德語(yǔ)問(wèn)題
- 2隨機(jī)變量的概率密度問(wèn)題
- 3一條褲子,原價(jià)120元,提價(jià)30%以后,又因過(guò)季降價(jià)30%,現(xiàn)在售價(jià)是多少?
- 4夜間,可看到池水能倒影路燈,若池水深2米,路燈距水面8米燈在水面的像到燈的距離應(yīng)
- 51.將一個(gè)長(zhǎng)方體平均截成5段,每段長(zhǎng)5分米,表面積增加了120平方分米.原來(lái)長(zhǎng)方體的體積是多少立方分米?
- 6調(diào)節(jié)水龍頭,讓水一滴滴流出,在下方放一盤(pán)子,調(diào)節(jié)盤(pán)子高度,使水滴碰到盤(pán)子時(shí),恰有另一水滴開(kāi)始下落,而空中還有一滴正在下落的水滴,測(cè)出水龍頭到盤(pán)子的高度為h(m),從第一
- 7冬天窗戶上為什么會(huì)有水蒸氣
- 8質(zhì)量為m的木塊放在水平傳送帶上,隨傳送帶一起向前運(yùn)動(dòng),木塊與傳送帶間的動(dòng)摩擦因數(shù)為μ,則下列說(shuō)法正
- 9再勇敢些,用英文怎么說(shuō).be more modest,對(duì)嗎,
- 10已知命題p:方程x2+mx+1=0有兩個(gè)不等的負(fù)實(shí)根,命題q:方程4x2+4(m-2)x+1=0無(wú)實(shí)根,若p或q為真,p且q為假,則實(shí)數(shù)m的取值范圍是( ?。?A.(1,2]∪[3,+∞) B.(1,2)∪(3,+∞) C.(1,2]
- 11(1)若不等式組(1)x+ab 的解集是-2
- 1264噸硫最能能制取多少硫酸?