![](http://d.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=075fa377a3cc7cd9fa783cdf09310d07/54fbb2fb43166d22e4baad0e462309f79152d25f.jpg)
1.
∵△CDE為RT△
∴CD²+CE²=DE²
∵EF垂直且平分AD
∴△DEM≌△AEM
∴DE=AE
∵CD²+CE²=DE²
∴AE²=CD²+CE²
∵AE=AC-CE=2-CE
∴AE²=4-4CE+CE²=CD²+CE²
得出4-4CE=CD²
∵CD=√2
∴CE=1/2
∴AE=2-CE=3/2
2.
∵△DEM≌△AEM
∴∠CAD=∠ADE
∵AD平分∠BAC
∴∠ADE=∠BAD
∴CE∥AB
同理可證DF∥AC
∵∠ADE=∠ADF,∠DME=∠DMF,DM=DM
∴△DEM≌△DMF
∴DE=DF
因此四邊形AECF為菱形
∵AC=2,∠CAD=22.5°
∴CD=AC*tg22.5°=2tg22.5°≈0.8284