2a2 |
x |
2a2 |
x2 |
a |
x |
x2?ax?2a2 |
x2 |
(x+a)(x?2a) |
x2 |
①若a=0,f(x)=x,f(x)在(0,+∞)上單調(diào)遞減.
②若a>0,當(dāng)x∈(0,2a)時(shí),f′(x)<0,f(x)在(0,2a)上單調(diào)遞減;當(dāng)x∈(2a,+∞)時(shí),f′(x)>0,f(x)在(2a,+∞)上單調(diào)遞增.
③若a<0,當(dāng)x∈(0,-a)時(shí),f′(x)<0,f(x)在(0,-a)上單調(diào)遞減;當(dāng)x∈(-a,+∞)時(shí),f′(x)>0,f(x)在(-a,+∞)上單調(diào)遞增.
綜上:①當(dāng)a=0時(shí),f(x)在(0,+∞)上單調(diào)遞增.
②當(dāng)a>0時(shí),f(x)在(0,2a)上單調(diào)遞減,在(2a,+∞)上單調(diào)遞增.
③當(dāng)a<0時(shí),f(x)在(0,-a)上單調(diào)遞減,在(-a,+∞)上單調(diào)遞增.
(2)當(dāng)a=1時(shí),f(x)=x+
2 |
x |
由(1)知,若a=1,當(dāng)x∈(0,2)時(shí),f(x)單調(diào)遞減,當(dāng)x∈(2,+∞)時(shí),f(x)單調(diào)遞增,
所以f(x)min=f(2)=3-ln2.
因?yàn)閷θ我獾膞1,x2∈[1,e],都有f(x1)≥g(x2)成立,
所以問題等價(jià)于對于任意x∈[1,e],f(x)min≥g(x)恒成立,
即3-ln2≥x2-2bx+4-ln2對于任意x∈[1,e]恒成立,
即2b≥x+
1 |
x |
因?yàn)楹瘮?shù)y=x+
1 |
x |
1 |
x2 |
所以函數(shù)y=x+
1 |
x |
1 |
x |
1 |
e |
所以2b≥e+
1 |
e |
e |
2 |
1 |
2e |
故實(shí)數(shù)b的取值范圍為[
e |
2 |
1 |
2e |