精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知數(shù)列An是等差數(shù)列,公差d不等于0,An不等于0,(n屬于正整數(shù))

    已知數(shù)列An是等差數(shù)列,公差d不等于0,An不等于0,(n屬于正整數(shù))
    A(k)X的平方+2A(k+1)X+A(k+2)=0,(k屬于正整數(shù)).
    (1)求證:當(dāng)k取不同的正整數(shù)時(shí),方程都有實(shí)數(shù)根.
    (2)若方程不同的根依次為X1,X2,X3.Xn.求證:1/X1+1,1/X2+1,1/X3+1,.,1/Xn+1,.是等差數(shù)列.
    數(shù)學(xué)人氣:593 ℃時(shí)間:2020-04-11 00:52:35
    優(yōu)質(zhì)解答
    【解】
    (1) 方程A(k)(X^2)+2A(k+1)X+A(k+2)=0,則其
    Δ=4[ A(k+1)^2-A(k)*A(k+2)]
    =4[ [A(k)+d]^2-A(k)*[A(k)+2d] ]
    =4d^2>0;
    所以有實(shí)數(shù)解;
    (2) 設(shè)A(k)(X^2)+2A(k+1)X+A(k+2)=0的根為X(k),X(k+1);則:
    X(k)+X(k+1)=-2A(k+1)/A(k)=-2[(A(k)+d)/A(k)]=-2[1+d/A(k)];
    X(k)*X(k+1)=A(k+2)/A(k)=1+2d/A(k);
    所以:
    1/[X(k+1)+1]-1/[X(k)+1]
    =[ X(k)-X(k+1) ]/[X(k+1)*X(k)+( X(k+1)+X(k) )+1]
    =[(X(k)+X(k+1))^2-4X(k)*X(k+1)]^(1/2)/[X(k+1)*X(k)+( X(k+1)+X(k) )+1]
    =(4d^2/A(k)^2)^(1/2)/(-d/A(k))
    =|2d/A(k)|/[-d/A(k)]
    = 2
    所以{1/(X(k)+1)}成等差數(shù)列
    我來回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版