a2+b2 |
2 |
a+b |
2 |
a?b |
2 |
(2)假設(shè)當(dāng)n=k(k∈N*,k>1)時,不等式成立,即
ak+bk |
2 |
a+b |
2 |
因為a>0,b>0,k>1,k∈N*,
所以(ak+1+bk+1)-(akb+abk)=(ak-bk)(a-b)≥0,于是ak+1+bk+1≥akb+abk.(6分)
當(dāng)n=k+1時,(
a+b |
2 |
a+b |
2 |
a+b |
2 |
ak+bk |
2 |
a+b |
2 |
ak+1+bk+1+akb+abk |
4 |
ak+1+bk+1+ak+1+bk+1 |
4 |
ak+1+bk+1 |
2 |
即當(dāng)n=k+1時,不等式也成立.(9分)
綜合(1),(2)知,對于a>0,b>0,n>1,n∈N*,不等式
an+bn |
2 |
a+b |
2 |
(11分)