關(guān)于極限的問題,f(x)={xsin1/x,x>0 a+x^2,x≤0 這是分段函數(shù).為啥limf(x)x趨于0+ =0而不是等于1?
關(guān)于極限的問題,f(x)={xsin1/x,x>0 a+x^2,x≤0 這是分段函數(shù).為啥limf(x)x趨于0+ =0而不是等于1?
另外還有一個問題,f(x)={e^(1/x-1) ,x>0 ,ln(1+x),-1
另外還有一個問題,f(x)={e^(1/x-1) ,x>0 ,ln(1+x),-1
數(shù)學(xué)人氣:427 ℃時間:2019-08-17 18:15:39
優(yōu)質(zhì)解答
x>0f(x)=xsin(1/x)此時1/x趨于無窮則sin(1/x)在[-1,1]震蕩,也就是有界而x是無窮小無窮小乘有界是無窮小,所以極限是0sin/x,當(dāng)x趨于0時極限是1但這里sin(1/x)/(1/x),1/x不是趨于0,所以不能用x趨于1+則x-1趨于0+所以1/(...首先感謝回答,關(guān)于第一個問題,為什么不是用等于1我已經(jīng)看明白了,不過你所說x是無窮小,無窮小乘以有界等于無窮小,這個我覺得有問題,題設(shè)x>0怎么會是無窮小呢?應(yīng)該是無窮大,難道你的無窮小是指無窮大等于無窮小的倒數(shù)?額,基礎(chǔ)不大好,希望你能稍微解釋清楚點(diǎn),第二個問題我大體也看懂了,趨于1-,因?yàn)?-減去1等于0負(fù),趨于0負(fù)是指從-1到0之間無限接近0,是這么理解么?如果是這么理解的話,趨于0負(fù)最后得出e^(-x)x趨于0+,也就是趨于0,所以是無窮小而第二個你說得對所以這里就是e的-∞次方而由y=e^x圖像看出此時y趨于0即極限是0
我來回答
類似推薦
- 請問一道問題:討論函數(shù)f(x)=xsin1/x,(x不等于0)和f(x)=0,(x=0) 在x=0處的連續(xù)性與可導(dǎo)性
- 證明:若x→+∞及x→-∞時,函數(shù)f(x)的極限都存在且都等于A,則limf(x)=A
- 設(shè)函數(shù)f(x)在x=1處連續(xù),且limf(x)/x-1的極限=2,則f(1)等于多少
- 設(shè)函數(shù)f(x)=xsin1/x,x不等于0,0,x=0,判斷函數(shù)分(x)在
- 設(shè)函數(shù)f(x)在x=0點(diǎn)的左右極限均存在,則 limf(x^3)(x趨于0)是否等于limf(x)(
- intellectual potential是什么意思
- 二十七分之一加八分之一等于多少
- m-6n=20 mn=-6怎么解過程寫出來
- 請給我課外古詩(非絕句)十首,
- 朝花夕拾人物
- 修改錯誤There is a tree in the front of the house.__________
- 通知,八月份原本要交的三篇作文不用寫,語文卷子可選做!
猜你喜歡
- 1汽車從甲地開往乙地,每小時行40千米,3小時后剩下的路程比全程的一半少8千米.如改用每小時52千米的速度行駛,再行幾小時到達(dá)乙地?
- 2印第安人喜愛雨后清風(fēng)的氣息,喜愛它拂過水面的聲音,喜愛風(fēng)中飄來的松脂的幽香.修辭手法?
- 3在平行四邊形ABCD中,向量AB+CA+BD等于
- 4高中勻變速直線運(yùn)動相關(guān)習(xí)題...
- 5y=x的平方+根號下【X-1/X+1】的導(dǎo)數(shù)怎么求啊
- 6用瓊脂平板劃線法分離細(xì)菌,培養(yǎng)后如何識別是你接種的,還是操作時雜菌污染?
- 7在1 2 3 4 5 6 7 8 中間填上加減乘除運(yùn)算符號等于2008
- 8拋物線的解析式為y=ax2+bx+c ,當(dāng)4a+2b+c=0時,拋物線必過x軸上一點(diǎn),這一點(diǎn)是什么?/
- 9從百草園到三味書屋 第二段文字從哪些角度來描寫景物?表現(xiàn)了景物的什么特點(diǎn)?
- 10某大學(xué)宿舍里A、B、C、D、E、F、G七位同學(xué),其中兩位來自哈爾濱,兩位來自天津,了
- 11某實(shí)驗(yàn)小組用0.50mol/L NaOH溶液和0.50mol/L硫酸溶液進(jìn)行中和熱的測定.Ⅰ.本制0.50mol/L NaOH溶液 (1)若實(shí)驗(yàn)中大約要使用245mL NaOH溶液,至少需要稱量NaOH固體 g
- 12讀文言文有什么方法