已知點(diǎn)P(cos2x+1,1),點(diǎn)Q(1,
sin2x+1)(x∈R),且函數(shù)f(x)=
?
(O為坐標(biāo)原點(diǎn)),
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的最小正周期及最值.
(1)因?yàn)辄c(diǎn)P(cos2x+1,1),點(diǎn)
Q(1,sin2x+1),
所以,
f(x)=cos2x+1+sin2x+1=cos2x+sin2x+2=
2sin(2x+)+2.
(2)由
f(x)=2sin(2x+)+2,所以T=π,
又因?yàn)閤∈R,所以f(x)的最小值為-2+2=0,f(x)的最大值為2+2=4.