即a^x1(cosy1+isiny1)=a^x2(cosy2+isiny2)
對(duì)比實(shí)部,虛部:
a^x1cosy1=a^x2cosy2
a^x1siny1=a^x2siny2
兩式平方相加得:a^2x1=a^2x2,
得x1=x2
故有:cosy1=cosy2,siny1=siny2
所以y2=y1+2kπ k∈Z
即z1=x1+y1i
z2=x1+(y1+2kπ)i
z2-z1=2kπi
對(duì)于任意復(fù)數(shù)z=x+yi(x,y∈R),定義函數(shù)f(z)=a的x次方*(cosy+isiny)
對(duì)于任意復(fù)數(shù)z=x+yi(x,y∈R),定義函數(shù)f(z)=a的x次方*(cosy+isiny)
(其中常數(shù)a>0且a≠1).若兩個(gè)復(fù)數(shù)z1、z2滿足f(z1)=f(z2),求z1與z2的關(guān)系
(其中常數(shù)a>0且a≠1).若兩個(gè)復(fù)數(shù)z1、z2滿足f(z1)=f(z2),求z1與z2的關(guān)系
數(shù)學(xué)人氣:252 ℃時(shí)間:2020-09-30 17:44:22
優(yōu)質(zhì)解答
我來(lái)回答
類似推薦
- i的i次方等于多少,寫(xiě)成x+yi的形式
- 復(fù)數(shù)z的n次方=1,1+z.+z的n次方=
- 設(shè)復(fù)數(shù)z=x+yi(x,y∈R)且|z-4i|=|z+2|,則2x+4y的最小值為_(kāi).
- 函數(shù)f(x)=3的x次方+3的負(fù)x次方與g(x)=3的x次方-3的負(fù)x次方的定義域?yàn)镽,
- 在復(fù)數(shù)范圍內(nèi)因式分解:X的6次方—Y的6次方
- 危言聳聽(tīng)的危怎么解釋.
- 費(fèi)叔叔有一只手表和一個(gè)鬧鐘,他發(fā)現(xiàn)鬧鐘每走一個(gè)小時(shí),他的手表會(huì)多走30秒,但鬧鐘卻比標(biāo)準(zhǔn)時(shí)間每小時(shí)慢30秒.在今天中午12點(diǎn)費(fèi)叔叔把手表和標(biāo)準(zhǔn)時(shí)間校準(zhǔn),那么明天中午12點(diǎn)時(shí),費(fèi)
- 概率論的題..已知100臺(tái)車床彼此獨(dú)立的工作.
- 初二的什么人能上初三的培優(yōu)班
- 小紅的體重比小寧重5kg,小寧的體重比小紅輕七分之一,小紅的體重是多少?
- the的發(fā)音規(guī)則 是在輔音還是在輔音字母前發(fā)“ z額” 比如the USA
- 初中語(yǔ)文和高中語(yǔ)文所教的內(nèi)容有什么不同?
猜你喜歡
- 1We are having a wonderful life and Mum FEELS naturally part of it,
- 2關(guān)于吾腰千錢(qián)的問(wèn)題
- 3日本最高的山是富士山嗎?高多少米阿?
- 4急求小學(xué)五年級(jí)上語(yǔ)文詞語(yǔ)手冊(cè)第14課和第15課日積月累當(dāng)中的詞語(yǔ)
- 55x+6y=6,8x+9y=16
- 6高中英語(yǔ)語(yǔ)法與句型
- 7我想問(wèn)一下一元一次不等式組解集表示問(wèn)題,如果一個(gè)不等式組是a+2<5,a+3<10,那么在數(shù)軸上表示它的解集該如何表示?是只表示出最后解集a<3,還是把a(bǔ)<3 和a<7都標(biāo)出來(lái)?還有一個(gè)問(wèn)題,x+2<x-1是一元一次方程組嗎?
- 8問(wèn)一句英語(yǔ)是否有問(wèn)題
- 9中間變量值域法
- 10急求一篇以心靈的橋梁為主題的作文,不少于500字(原創(chuàng))
- 11It is difficult for a(foreign)_to learn Chinese
- 12圓的半徑是射線,直徑是直線._.(判斷對(duì)錯(cuò))